Муниципальное казенное общеобразовательное учреждение средняя общеобразовательная школа № 1

Рассмотрено на заседании МС Протокол № 1 От «29»августа 2019 г.

Согласовано
Зам. директора по УВР
И.Л.Филатова
30.08.20**29**г.

Утверждено Р Директор ИМ.В.Жабина Приказ № 65 от 02.09.20**20**г.

РАБОЧАЯ ПРОГРАММА внеурочной деятельности «Математика для всех» 8 класс

Разработала Демидова Н.В., учитель математики

Пояснительная записка

Данная рабочая программа внеурочной деятельности «Математика для всех» разработана на основе:

- 1.Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 года № 1897.
- 2. Примерной основной образовательной программы основного общего образования (Федеральное учебно-методическое объединение по общему образованию. Протокол заседания от 8 апреля 2015 г. № 1/15).

Цель программы — создание условий для повышения уровня математического развития учащихся, формирования логического мышления посредством освоения основ содержания математической деятельности.

- в направлении личностного развития: формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества; развитие интереса к математическому творчеству и математических способностей;
- в метапредметном направлении: формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
- **в предметном направлении:** создание фундамента для математического развития, формирование механизмов мышления, характерных для математической деятельности.

Задачи:

Обучающие:

- научить правильно применять математическую терминологию;
- ° подготовить учащихся к участию в олимпиадах;
- ° совершенствовать навыки счёта, применения формул, различных приемов;
- ° научить делать доступные выводы и обобщения, обосновывать собственные мысли.

Воспитательные:

- формировать навыки самостоятельной работы;
- воспитывать сознательное отношение к математике, как к важному предмету;
- формировать приемы умственных операций школьников (анализ, синтез, сравнение, обобщение, классификация, аналогия), умения обдумывать и планировать свои действия.
- ^о воспитывать уважительное отношение между членами коллектива в совместной творческой деятельности;
- ° воспитывать привычку к труду, умение доводить начатое дело до конца.

Развивающие:

- ° расширять кругозор учащихся в различных областях элементарной математики;
- развивать математическое мышление, смекалку, эрудицию;
- ° развивать у детей вариативность мышления, воображение, фантазии, творческие способности, умение аргументировать свои высказывания, строить простейшие умозаключения.

Программа способствует:

- ° развитию разносторонней личности ребенка, воспитанию воли и характера;
- ° созданию условий для формирования и развития практических умений обучающихся решать нестандартные задачи, используя различные методы и приемы;
- ° выявлению одаренных детей;
- ° развитию интереса к математике.

В основу составления программы положены следующие педагогические принципы:

- ° учет возрастных и индивидуальных особенностей каждого ребенка;
- ° доброжелательный психологический климат на занятиях;
- ° личностно-деятельный подход к организации учебно-воспитательного процесса;
- ° подбор методов занятий соответственно целям и содержанию занятий и эффективности их применения;
- ° оптимальное сочетание форм деятельности;
- ° доступность.

При выборе тем определяющим фактором стало содержание программы курса математики за 8 класс и расширение в таких темах, как «Теорема Пифагора», «Площадь», «Пропорциональные отрезки», «Вероятность. Теоремы теории вероятности», «Модульные уравнения и неравенства», так же включены темы по истории математики, такие избранные вопросы олимпиадной математики, как теория делимости, логика высказываний, принцип Дирихле и другие. Включенный материал программы тесно связан с различными сторонами нашей жизни, а также с другими учебными предметами. Отбор заданий подразумевает доступность предлагаемого материала, сложность задач нарастает постепенно. Данная программа рассчитана на проведение 1 часа в неделю, 34 часа в год.

Планируемые результаты освоения учебного курса

У учащихся могут быть сформированы личностные результаты:

- ответственное отношение к учению, готовность и способность обучающихся к самообразованию на основе мотивации к обучению и познанию, осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов;
- ° способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
- умение контролировать процесс и результат математической деятельности;
- о первоначальные представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
- коммуникативная компетентность в общении и сотрудничестве со сверстниками в образовательной, учебно-исследовательской, творческой и других видах деятельности;
- ° критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- ° креативность мышления, инициативы, находчивости, активности при решении задач.

Метапредметные:

1) Регулятивные.

Учащиеся получат возможность научиться:

- ° составлять план и последовательность действий;
- ° определять последовательность промежуточных целей и соответствующих им действий с учётом конечного результата;
- ° предвидеть возможность получения конкретного результата при решении задач;
- ° осуществлять констатирующий и прогнозирующий контроль по результату и способу действия;
- ° концентрировать волю для преодоления интеллектуальных затруднений и физических препятствий;
- адекватно оценивать правильность и ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения.

2) Познавательные.

Учащиеся получат возможность научиться:

- ° устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
- ° формировать учебную и общекультурную компетентность в области использования информационно-коммуникационных технологий;
- ° видеть математическую задачу в других дисциплинах, окружающей жизни;
- ° выдвигать гипотезу при решении учебных задач и понимать необходимость их проверки;
- ° планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
- ° выбирать наиболее эффективные и рациональные способы решения задач;
- ° интерпретировать информацию (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ);
- ° оценивать информацию (критическая оценка, оценка достоверности).

3) Коммуникативные.

Учащиеся получат возможность научиться:

- организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников;
- взаимодействовать и находить общие способы работы; работать в группе; находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
- ° прогнозировать возникновение конфликтов при наличии различных точек зрения;
- разрешать конфликты на основе учёта интересов и позиций всех участников;
- ° координировать и принимать различные позиции во взаимодействии;
- ° аргументировать свою позицию и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности.

Предметные

Учащиеся получат возможность научиться:

- о самостоятельно приобретать и применять знания в различных ситуациях для решения различной сложности практических задач, в том числе с использованием при необходимости справочных материалов, калькулятора и компьютера;
- о пользоваться предметным указателем энциклопедий и справочников для нахождения информации;
- ° уметь решать задачи с помощью перебора возможных вариантов;
- выполнять арифметические преобразования выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
- ° применять изученные понятия, результаты и методы при решении задач из различных реальных ситуаций, не сводящихся к непосредственному применению известных алгоритмов;
- о самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем, а также самостоятельно интерпретировать результаты решения задачи с учётом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

Содержание программы

<u>Элементы математической логики. Теория чисел.</u> Логика высказываний. Диаграммы Эйлера-Венна. Простые и сложные высказывания. Высказывательные формы и операции над ними. Задачи на комбинации и расположение. Применение теории делимости к решению олимпиадных и конкурсных задач. Задачи на делимость, связанные с

разложением выражений на множители. Степень числа. Уравнение первой степени с двумя неизвестными в целых числах. Графы в решении задач. Принцип Дирихле.

Планируемые результаты. Обучающийся получит возможность:

- уметь решать логические задачи;
- отображать логические рассуждения геометрически;
- записывать сложные высказывания, формулировки теорем, аксиом, используя символы алгебры и логики;
- уметь применять графы и принцип Дирихле при решении задач;
- анализировать и осмысливать текст задачи, моделировать условие с помощью схем, рисунков, графов;
- строить логическую цепочку рассуждений, критически оценивать полученный ответ, осуществлять самоконтроль.
- уметь решать задачи повышенной сложности;
- применять различные способы разложения на множители при решении задач;
- научится решать уравнения и системы уравнений первой степени с двумя переменными.

<u>Геометрия многоугольников.</u> Площади. История развития геометрии. Вычисление площадей в древности, в древней Греции. Геометрия на клеточной бумаге. Разделение геометрических фигур на части. Формулы для вычисления объемов многогранников. Герон Александрийский и его формула. Пифагор и его последователи. Различные способы доказательства теоремы Пифагора. Пифагоровы тройки. Геометрия в древней индии. Геометрические головоломки. Олимпиадные и конкурсные геометрические задачи. О делении отрезка в данном отношении. Задачи на применение подобия, золотое сечение. Пропорциональный циркуль. Из истории преобразований.

Планируемые результаты. Обучающийся получит возможность:

- распознавать и сопоставлять на чертежах и моделях геометрические фигуры;
- уметь разделять фигуры на части по заданному условию из частей конструировать различные фигуры;
- уметь решать задачи на нахождение площади и объема фигур, знать старинные меры измерения площадей;
- познакомиться с историческими сведениями о развитии геометрии, расширить кругозор в области изобразительного искусства, архитектуры, получить практические навыки изображения увеличенных картин;
- научиться работать над проектами, развивая исследовательские навыки.

<u>Геометрия окружности.</u> Архимед о длине окружности и площади круга. О числе Пи. Окружности, вписанные углы, вневписанные углы в олимпиадных задачах.

Планируемые результаты. Обучающийся получит возможность:

- распознавать и сопоставлять на чертежах и моделях окружности;
- уметь решать задачи на применение свойств окружности, касательной, вписанных углов и др.

Теория вероятностей. Место схоластики в современном мире. Классическое определение вероятности. Геометрическая вероятность. Основные теоремы теории вероятности и их применение к решению задач.

Планируемые результаты. Обучающийся получит возможность:

- иметь представление об элементарном событии уметь вводить обозначения для элементарных событий простого опыта, интерпретировать условия задач в виде схем и рисунков;
- знать, что сумма вероятностей всех элементарных событий равна единице;
- понимать что такое объедение и пересечение событий, что такое несовместные события;
- уметь решать вероятностные задачи с применением формул сложения

вероятностей для несовместных событий, формулы умножения вероятностей независимых событий.

Уравнения и неравенства. Уравнения с параметрами — общие подходы к решению. Разложение на множители. Деление многочлена на многочлен. Теорема Безу о делителях свободного члена, деление «уголком», решение уравнений и неравенств. Модуль числа. Уравнения и неравенства с модулем.

Планируемые результаты. Обучающийся получит возможность:

- познакомиться с методами решения уравнения с параметрами, простых и более сложных, применением графического способа решения;
- овладеть навыками разложения на множители многочленов 5,3,4 степеней;
- научиться решать уравнения и неравенства с модулем, «двойным» модулем;

<u>Проекты.</u> Что такое проект. Виды проектов (индивидуальный, групповой). Как провести исследование. Работа над проектами.

Планируемые результаты. Обучающийся получит возможность:

- спланировать и подготовить творческий проект по выбранной теме, получат опыт публичных выступлений;
- познакомиться с основами исследовательской деятельности, приобретет опыт работы с источниками информации, интерпретировать информацию (структурировать, презентовать с помощью таблиц, диаграмм и пр.), обрабатывать информацию с помощью компьютерных программ, ресурсов Интернет;
- приобретет навыки самостоятельной работы для решения практических заданий, опыт коллективной работы в сотрудничестве.

Тематическое планирование

$N_{\underline{0}}$	Тема	Количество
		часов
1.	Элементы математической логики. Теория чисел.	7
2.	Геометрия многоугольников.	9
3.	Геометрия окружности.	3
4.	Теория вероятностей.	4
5.	Уравнения и неравенства.	6
6.	Проекты.	5
	Итого	34 часа

Тематическое календарное планирование курса

$N_{\underline{0}}$	Тема занятия	Форма и вид деятельности
	Тема 1. Элементы математической логики. Теория чисел.	
1.	Логика высказываний. Диаграммы Эйлера-	Беседа-лекция, Решение
	Венна.	занимательных задач
2.	Простые и сложные высказывания. Высказывательные формы и операции над ними.	Беседа. Практическая работа в группах
3.	Задачи на комбинации и расположение.	Решение задач, индивидуальная работа
4.	Применение теории делимости к решению олимпиадных и конкурсных задач.	Мини-лекция, «Конкурс знатоков»

5.	Задачи на делимость, связанные с	Решение задач, работа в группах
	разложением выражений на множители.	
6.	Степень числа. Уравнение первой степени с	Решение задач, работа в группах
	двумя неизвестными в целых числах.	
7.	Графы в решении задач. Принцип Дирихле.	Мини-лекция Решение задач, работа в
		группах
	Тема 2. Геометрия многоугольников.	
8.	Площади. История развития геометрии.	Беседа. Знакомство с научно-
	Вычисление площадей в древности, в	популярной литературой.
	древней Греции.	Практическая работа в группах
9.	Геометрия на клеточной бумаге. Разделение	Практическая работа в группах
	геометрических фигур на части.	
10.	Формулы для вычисления объемов	Практическая работа в группах,
	многогранников. Герон Александрийский и	«Математический КВН»
	его формула.	
11.	Пифагор и его последователи. Различные	Беседа. Просмотр фрагментов фильма.
	способы доказательства теоремы Пифагора.	Оформление математической газеты,
		работа с источниками информации.
12.	Различные способы доказательства теоремы	Мини-лекция. Беседа. Оформление
	Пифагора. Пифагоровы тройки. Геометрия в	математической газеты, работа с
	древней Индии.	источниками информации.
13.	Геометрические головоломки. Олимпиадные	Творческая работа в группах
	и конкурсные геометрические задачи.	
14.	Геометрические головоломки. Олимпиадные	Решение занимательных задач,
	и конкурсные геометрические задачи.	Творческая работа в группах
15.	О делении отрезка в данном отношении.	Творческая работа в группах,
	Задачи на применение подобия, золотое	диагностическая работа в виде
	сечение.	викторины «Своя игра»
16.	Пропорциональный циркуль. Из истории	Мини-лекция Практическая работа
	преобразований.	
	Тема 3. Геометрия окружности	
17.	Архимед о длине окружности и площади	Беседа. Просмотр фрагментов
	круга. О числе Пи.	фильма. работа с источниками
		информации, игра «Конкурс знатоков»
18.	Окружности, вписанные углы, вневписанные	Творческая работа в группах.
	углы в олимпиадных задачах.	Решение олимпиадных и
		занимательных задач
19.	Окружности, вписанные углы, вневписанные	Творческая работа в группах.
	углы в олимпиадных задачах.	Решение олимпиадных и
		занимательных задач
20.	Что такое проект. Виды проектов	Мини-лекция. Выполнении е
	(индивидуальный, групповой). Как провести	коллективного мини проекта.
	исследование.	
	Тема 4. Теория вероятностей.	
21.	Место схоластики в современном мире.	Мини-лекция. Беседа. Решение задач.
	Классическое определение вероятности.	Практическая работа в группах
22.	Геометрическая вероятность.	Мини-лекция. «Математический КВН»
23.	Основные теоремы теории вероятности и их	Творческая работа в группах.
	применение к решению задач.	Решение олимпиадных и
	-	занимательных задач
24.	Основные теоремы теории вероятности и их	Практическая работа.
	1 1 1	j <u>i</u>

	применение к решению задач.	Диагностическая работа в виде теста.
		Оформление брошюры-пособия
25.	Работа над проектом. Как провести	Проективная работа, индивидуальная
	исследование. Работа с источниками	работа над проектами, экскурсия
	информации.	
	Тема 5. Уравнения и неравенства.	
26.	Уравнения с параметрами – общие подходы к	Мини-лекция. Решение заданий в
	решению.	парах.
27.	Разложение на множители.	Беседа. Практическая работа в
		группах.
28.	Деление многочлена на многочлен. Теорема	Мини-лекция Практическая работа в
	Безу о делителях свободного члена, деление	парах.
	«уголком»	
29.	Решение уравнений и неравенств.	Решение задач, работа в группах
		Участие в математическом конкурсе
30.	Решение уравнений и неравенств.	«Конкурс знатоков»,
		работа с источниками информации,
		ресурсами Интернет.
31.	Модуль числа. Уравнения и неравенства с	Практическая работа.
	модулем.	Диагностическая работа в виде теста.
		Оформление брошюры-пособия
	Тема 6. Проекты.	
32.	Работа над проектами.	Работа с источниками информации.
		Беседа.
33.	Защита проектов.	Конференция
34.	Защита проектов. Заключительное занятие.	Конференция, викторина «Своя игра»